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Project Goals:
§ Expand Vienna VLBI and Satellite Software (VieVS) to iteratively 

process multiple geodetic VLBI observing sessions
§ Test software by estimating Westford – GGAO baseline length and 

investigating the impact of cable calibration

Principles of Geodetic VLBI

Adapting radio astronomy techniques to measure the Earth 
and its rotation

Figure 2: Geometric model of geodetic VLBI
Schuch & Böhm, 2013

§ Measure time delay between 
quasar signals received by two 
telescopes due to:
• Geometry
• Earth’s rotation
• Atmospheric delays
• Clock variations

§ Correlation: Align signals from 
each pair of telescopes 
(baseline) and produce time 
delays between 
measurements.
• Astronomy: construct high-

resolution images of radio 
sources with aligned signals 
from many baselines.

• Geodesy: extract 
parameters including 
Earth’s rotation, site and 
source positions, and the 
atmosphere from time 
delays.

What does geodetic VLBI measure, and why does it matter?

§ Earth Orientation Parameters (EOPs): describe the Earth’s rotation and 
orientation in space
• VLBI is the only technique for measuring all EOPs, by showing us our 

location with respect to celestial sources.
• EOPs link the terrestrial and celestial reference frames, allowing for 

precise navigation and positioning on Earth and in space.
§ Site and source positions: define terrestrial and celestial reference frames

VLBI Data Processing with VieVS

Solution: Automated version of VieVS software for batch 
processing of VLBI sessions

Figure 4: Data flow for iterative processing of a single VLBI session. Yellow box indicates 
functionality added to VieVS software.

Figure 4 illustrates the data flow for the processing of a single session with the 
new system for batch-processing VLBI session observations.
This process is automatically performed for each selected session, reducing 
processing time per session from hours to ~5 minutes.

Testing Software with VLBI Estimates of the 
Westford – GGAO Baseline

Test 2: Cable Delay Calibration
§ Coaxial cables in instrumentation 

introduce time and phase delays in 
measured signal.

§ With cable calibration, measure 
cable phase delay and correct VLBI 
measurements.

Figure 6: Time series of residuals to weighted mean 
of Westford  – GGAO baseline length estimates for 
2019 – 2024 sessions

Figure 9: Variation in phase delay over 
azimuth and cable replacement times for 
GGAO 12-m dish from 2019 – 2024 
(adapted from Pfeiffer et al. 2024) Ba

se
lin

e 
le

ng
th

 re
sid

ua
ls 

to
 li

ne
ar

 fi
t (

m
m

)

Figure 8: Residuals of 2019 – 2024 
baseline lengths to linear model, with 
(top) and without (bottom) cable 
calibration for GGAO station
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Load observed 
time delays

Based on a priori:
§ EOPs
§ Atmospheric models
§ Site positions
§ Source positions
§ Loading models
§ Source structure
§ Clock variations

Estimate 
parameters

Model

Challenges of VieVS Data Processing:
§ Reducing 𝜒!" goodness-of-fit to unity by adding noise to observations
§ Time-consuming iteration process
§ Outlier elimination
§ Limited reproducibility
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Figure 1: Map of worldwide geodetic VLBI observing stations

Figure 3: Structure of VieVS geodetic processing modules

Load observed 
time delays

Time delay outputs 
from correlation 
User preferences

Model time delays
Models and a 
priori parameter 
values

Perform least-squares 
parameter estimation

> 1 outliers: 
eliminate outliers

0 outliers and 𝜒!" >
1: 

add constant noise

𝜒!" ≈ 1: done!
Output estimated 

parameters, 
baseline lengths

Test 1: Estimating Westford – GGAO baseline length
§ Niell et al. 2018: demonstrated VGOS system by estimating baseline length between Westford 

Antenna and Goddard (GGAO) stations for 2014 – 2017 sessions.
§ We extend time series by estimating baseline length for 121 sessions from 2019 – 2024.
§ Include only Westford and GGAO stations, fixing Westford clock and station position.
§ Also estimate clock models (20 min interval), zenith wet delay (15 min), gradients (1 hr).

Figure 5: Post-fit group delay residuals after iterative 
least squares processing of 2019 – 2024 sessions

Figure 7 (left): Time series of baseline length 
residuals to weighted mean for 2014 – 2017 
sessions (Niell et al.)

Our WRMS of 1.1 mm is comparable to Niell et 
al.’s value of 1.2 mm.

Summary:
§ New software greatly improved the 

efficiency of iterative VLBI processing 
with VieVS, as confirmed by baseline 
length estimates.

§ Cable calibration effectively corrects 
variations in baseline length estimates 
due to cable deterioration.
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