

Assessing Future EHT Observational Capabilities and Image Recovery

Ryan Hwangbo (UC Berkeley)

Mentors and Collaborators: Kazu Akiyama, Vincent Fish (MIT Haystack), Rohan Dahale, Marianna Foschi, Antonio Fuentes (IAA/CSIC)

Event Horizon Telescope (EHT)

Future EHT Configuration

- o 5 For M87 (SPT excl.)
- 10-15 unique baselines
- Single Frequency @ 230 GHz

Frequency Phase Transfer (FPT)

Methodology

Methodology: Observing

2030 EHT M87 u-v Coverage

86 + 230 GHz

Methodology: Imaging

GRRMHD Simulation Images for M87

- General Relativitsic Radiation
 Magneto-HydroDyamic
 Simulations
 - Generated by Chael et al. (2019)
 - Simulated image at 86, 230, and345 GHz (left to right)

- Flattening the intensity scale...
 - Detailed substructure is present in the jet emission
 - Low freqs show detail
 - Intensity scale of the ring is less apparent

Reconstructed Images of M87

Single-Frequency Observing

Multi-Frequency Imaging of M87

Exact MF Imaging, Jan 03

Conclusions...

- New sites improve recovery at all scales
- 345 GHz is achievable with FPT
 - Improved r_{SC} -scale structure recovery
 - Minimized loss to jet structure with MF-Imaging
- FPT & MF-I
 - FPT determines detectability
 - o MF-I determines image fidelity

	FPT	SF
MF-I	Strong Sensitivity & High-Fidelity Images	Weaker Sensitivity & High-Fidelity Images (if detection is made)
SF-I	Strong Sensitivity & Unresolved Images (at higher frequencies)	Weaker Sensitivity & Unresolved Images

Questions?

https://xkcd.com/2133 /