
Ne vs. Geodetic Altitude over time

Results & Conclusion

Drop in Ne 1.5 hours 
following umbra approach.

No drop in Ne in our background model.

Figure 7 (left) illustrates the recorded Ne 1.5 hours after the umbra passes over 
at 19UT. The middle plot illustrates our modeled background results integrated 
over azimuth and altitude at the same time. The right plot illustrates the 
difference of the two former plots.

Fig. 8: As a function of altitude and UT, on eclipse day, in specified bin:
(left) recorded Ne (right) modeled Ne background

(bottom) recorded Ne minus background
Dashed line indicates time of closest umbra approach.

~53% decrease in electron 
density 1.5 hours following 

umbra approach.

Figure 8 illustrates the altitudinal variation in electron density of a particular bin. 
The panels in the top row illustrate the model’s remarkable ability to emulate Ne 
on April 8th without the presence of eclipse effects. The panel in the bottom row 
illustrates the result of removing the background from the recorded data. Our 
results aligned with physically expected results, demonstrating the effectiveness 
of our machine learning implementation in modeling background variations and 
highlighting the use of high–precision space weather indices in geophysical 
research.

Fig. 7: Recorded, modeled background, and difference map of electron density (respectively) at 20.5 UT.

Ne recovers quicker 
at lower altitudes.
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Methods
The first step to creating our model was to increase the quality of our training data 
by filtering artifacts. We use a chain of layered filters with generous parameters to 
target multiple sources of error without degrading prominent features. The following 
figure illustrates the order and responses of the filters:

Fig 4: Recorded ion temperature at 19UT passing through each filter.
(a) Elements exceeding a 25% instrument rel. error are removed.

(b) Elements in each azimuth exceeding 2.5 standard deviations are removed.
(c) Data is binned by altitude to target differences in regional behavior. The bottom and upper  

~5th percentile of data within each bin is removed.
This filtering is applied to all data products to generate a month of high-quality 
training data.

The space weather indices FISM2 and Hp30 are high-resolution measures of EUV 
irradiance [2] and geomagnetic activity [3]; they are appended to our data products 
along the time dimension. Fig. 5 illustrates their high degree of correlation with 
electron density (Ne), indicating that they are good input features to train our 
model. Days with space weather indices exceeding 

Fig 5: Daily mean electron density vs FISM2 
index. Notice how days with high Hp30 index 

cluster together and correlate.

These outliers are 
removed to prevent 
skewing our model.

the eclipse day and the day of the eclipse itself 
were removed from the training data to prevent 
skewing. Next, we bin the data by azimuth and 
altitude to the following benefits:
• Bins increase flexibility in selecting the model’s 

resolution & optimizing our system’s compute.
• Bins capture changes in ionospheric 

phenomena at different regions.
• Bins maintain the original data architecture,  

granting more flexibility in contrasting the 
model with the recorded data.

Abstract
The Millstone Hill Ionospheric Steerable 
Antenna (MISA), seen in Fig. 1, is a 
radar antenna that emits high powered 
radio waves to provide measurements 
of near space environments. The radar 
has an altitude range of 90 to 1000 km, 
and a latitudinal and longitudinal 
sweeping range that spans from the 
arctic circle to the state of Florida. In 
April 2024, MISA recorded a trove of 
measurements on and surrounding the 
day of the April 8th solar eclipse.
Inconveniently, the eclipse event was preceded by a period of elevated 
geomagnetic activity earlier in the day, making isolating the eclipse’s effects on 
the ionosphere challenging. By leveraging data from adjacent days that were part 
of a monthslong MISA measurement campaign [1], we trained a high-resolution 
high-precision supervised machine learning model to generate accurate 
approximations of data products as a function of geophysical indices and 
universal time (UTC). Our results illustrate the spatial and altitudinal variation of 
electron density and temperature in the ionosphere due to the 2024 solar eclipse.

On April 8th, 2024, MISA recorded the 
electron density (Ne), electron 
temperature (Te), and ion temperature (Ti) 
data from the solar eclipse event at an 
elevation angle of 6°. Unfortunately, the 
presence of a geomagnetic storm earlier 
that day introduced background variations 
to the recorded data products (Fig. 2). 
Fortunately, the radar also recorded a 
trove of data products for the entire month 
of April. By leveraging this data, we can 
train a linear regression model that can 
emulate these background variations. 
This model can then be used to isolate the eclipse features from the geomagnetic 
storm by finding the difference between the model and recorded data, returning 
an approximate magnitude of the eclipse effects. To get the best model we want to 
select input features with a high degree of correlation to our output variables; 

Theory

Fig 1: MISA pointed south-west in Westford, MA

Fig. 2: Mean electron density in April. Notice the late 
evening variation. Eclipse day highlighted green.

Notice the drop in Ne at 
20UT following the 

eclipse passing.

the Flare Irradiance Spectral Model 2 
(FISM2) [2] and geomagnetic Hpo [3] 
indices are high-resolution indicators of 
geophysical activity which demonstrate 
this high correlation. However, 
complicating our efforts to create a model 
is the presence of artifacts which may 
skew our results (Fig. 3). By first 
implementing an aggressive number of 
generous filters we can target multiple 
sources of error while maintaining 
prominent features of the data creating 
high-quality data to train our model. 

Isolating Solar Eclipse Features using 
Supervised Machine Learning

Fig 6: as a function of UT & Ne:
(a) mean training data for all remaining days

(b) mean of bins falling on eclipse day
(c) model with identical space weather 

parameters as eclipse day

azimuth and altitude region as a function of 
UT. A fourth-degree linear regression was 
trained for the electron density, electron 
temperature, and ion temperature as a 
function of UT, FISM2 and Hp30 from the 
binned data. Every permutation of altitude and 
azimuth bin was modeled and appended with 
the same dimensions as the original data. 
Figure 6(b) illustrates the recorded electron 
density of the eclipse day. Figure 6(c) 
illustrates the model output when it is given 
identical UT, FISM2, and Hp30 parameters as 
the eclipse day. 
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Fig 3:  Recorded Ti at 19UT. Umbra & its path 
indicated in grey. Contour lines illustrate altitude.

Artifacts such as this azimuth 
will skew our model.
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Figure 6(a) illustrates binned data from all the Ne 
data products in April in a particular 

Notice the model’s lack of an 
eclipse depression at 20UT.


