The bow shock at the center of NGC 6334A with deep VLA observations. Is It a colliding wind region or a bow shock of a runaway star?

VANESSA YANZA

PHD STUDENT. UNAM. MEXICO. SUPERVISORS: DR. AINA PALAU AND DR. SERGIO DZIB.

MASSIVE STAR FORMING REGIONS

Clouds of gas and dust gravitationally collapse to form stars in the whole mass spectrum.

MASSIVE STAR FORMING REGIONS

RADIO:

- FREE-FREE EMISSION (Thermal)
- SYNCHROTRON EMISSION (Non-Thermal)

Cat's paw nebula. NGC 6334

NGC 6334A 1.34 Kpc

FIG. 4.—The 3.5 cm image of the H II region NGC 6334A. Contours are -4, 4, 5, 6, 8, 10 and 12×1.3 mJy beam⁻¹, the rms noise of the image. The compact source near the center of the nebula is proposed to trace the exciting star. There are no known counterparts to this radio source. The small cross marks the position of IRS 19, taken from 2MASS. The half-power contour of the beam (0".72 \times 0".56; P.A. = 41°) is shown in the bottom left corner of the image.

Rodriguez et. al . 1982; Carral et al. (2002)

Shell + central compact source

THE CENTRAL SOURCE: THE MYSTERIOUS SOURCE

• arc shape variability negative spectral index • First suggestion: Colliding wind region.

Rodriguez et. al. (2014)

COLLIDING WIND SCENARIO

03. 04. 05. 06.

01.

VLA Observations taken in 2014

A Configuration

X(10 GHz), K(22GHz), Ka(33GHz) bands.

3 epochs in X

1 epoch in K and Ka.

Results

Yanza et al. in prep.

Results

Figure 1. X band (8-12 GHz) image using all visibilities. White square shows the field of view presented in the following images. The synthesized beam is shown in the bottom-left side of the panel

J2000 Right Ascension

Spectral

Figure 3. Spectral index maps of VLA J172019.21-355440.9. Panels are: (a) Spectral index map obtained from all observations in full X-band, (b) spectral index error in the X band, (c) spectral index from the combination of the K- and Ka-bands, and (d) spectral index error in the K+Ka band. Spectral index results are given in the regions where the radio continuum is > $6\sigma_{noise}$. Regions below this value are masked. Contour levels synthesized beam sizes are the same as in Fig. 2 for their corresponding band.

Spectral index

In this scenario...

From Rodriguez et al. (1982), Carral et al. (2002), the spectral type of ionizing star is O7. 5 (10^5 Lsun).

e.g. Dzib et al. (2013)

In this scenario...

From Rodriguez et al. (1982), Carral et al. (2002), the spectral type of ionizing star is O7. 5 (10⁵ Lsun).

Where are the stars?

e.g. Dzib et al. (2013)

Let's look for them!

Herschel 70um

HERSCHEL PACS70

Spitzer

IRAC4

Exploring the spectral type of the ionizing star

Spectral type of the ionizing star

Calculating the spectral type of the ionizing star using the luminosity of the shell in compact configuration data. Flux of ionizing photons:

$$\left[\frac{\dot{N}_{\rm i}}{\rm s^{-1}}\right] = 8.852 \times 10^{40} \left[\frac{S_{\nu}}{\rm Jy}\right] \left[\frac{\nu}{\rm GHz}\right]^{0.1} \left[\frac{T_{\rm e}}{10^4 \rm K}\right]^{0.35}$$

(Sanchez-Monge, Beltran et al. 2013, A&A, 550, A21) Using Sv = 6 Jy, v = 23.2 GHz, Te=1e4K and D=1340pc. Ni = 1.3x10^48

$$\left[\frac{D}{\mathrm{pc}}\right]^2$$

(B.18)

SEDFITTER

Software that consider a set of sources to be studied. For each source, the SED fitter can fit models, such as model stellar photospheres, YSO model SEDs, as well as galaxy and AGB templates, to the multi-wavelength photometry measurements of this particular source using linear regression. Models: Robitaille et al. (2017)

Luminosity, distance and extinction are free parameters.

Model set	Icon	Star	Disk	Envelope	Cavity	Ambient	Inner radius	Variables	Models
s-s-i		yes						2	10 000
sp-s-i	▶.◄	yes	passive				R _{sub}	7	10 000
sp-h-i	▶ • «	yes	passive				variable	8	10 000
s-smi	•	yes				yes	$R_{ m sub}$	2	10 000
sp-smi	▶.◄	yes	passive			yes	$R_{ m sub}$	7	10 000
sp-hmi	* ••	yes	passive			yes	variable	8	10 000
s-p-smi	$ \cdot $	yes		power-law		yes	R _{sub}	4	10 000
s-p-hmi	0	yes		power-law		yes	variable	5	10 000
s-pbsmi		yes		power-law	yes	yes	R _{sub}	7	10 000
s-pbhmi	()	yes		power-law	yes	yes	variable	8	10 000
s-u-smi	ullet	yes		Ulrich		yes	R _{sub}	4	10 000
s-u-hmi	0	yes		Ulrich		yes	variable	5	10 000
s-ubsmi		yes		Ulrich	yes	yes	R _{sub}	7	10 000
s-ubhmi	()	yes		Ulrich	yes	yes	variable	8	10 000
spu-smi	•••	yes	passive	Ulrich		yes	R _{sub}	8	10 000
spu-hmi	\odot	yes	passive	Ulrich		yes	variable	9	10 000
spubsmi		yes	passive	Ulrich	yes	yes	R _{sub}	11	40 000
spubhmi	()	yes	passive	Ulrich	yes	yes	variable	12	80 000

SEDFITTER

We fitted different YSO models to our source. The data was taken from different telescopes reported by Tigé et al. (2017)

- Spitzer. IRAC
 - Herschel
 - MSX
 - APEX
 - SIMBA

SEDFITTER

We fitted different YSO models to our source. The data was taken from different telescopes reported by Tigé et al. (2017)

- Spitzer. IRAC
 - Herschel
 - MSX
 - APEX
 - SIMBA

Teff=21000 K B2

Teff=16000K

Intermediate star

There is a cavity

ALMA

SMA

Palau et al. (2021)

RUNAWAY STAR SCENARIO

Non-thermal emission in runaway stars

Massive star

Pereira et al. (2016) reported B2 runaway star with nonthermal emission.

Velocity of the source

NGC 6334B

VLA DATA:

- 1986
- 1994
- 1997
- 1998
- 2002
- 2011
- 2014

NGC 6334A

Velocity of the source

Vel=123 km/s +/- 40 km/s

Velocity of the source

Vel=123 km/s +/- 40 km/s

Where is the massive star?

Preliminary result

Using Herschel 70um, we calculate a Lbol ~ 15000-20000 Lsun This is a B0 star

Preliminary result

Using Herschel 70um, we calculate a Lbol ~ 15000-20000 Lsun This is a B0 star

The Peak at the north could be the ionizing star that it is also a runaway star, but was moved from the center by the dynamical scenario

