Ultracool dwarfs and Star-Planet Interactions

Melodie Kao

Lowell Observatory

M Dwarfs ~2300-3800 K

L Dwarfs ~1500-2200 K

T Dwarfs ~550-1400 K

Y Dwarfs ~250~450 K

> Gas Giant Planets

Melodie Kao (mkao@lowell.edu)

Ultracool dwarfs: Late M dwarf through brown dwarfs

TRAPPIST-1 System

Mercury

Inner Solar System

(((((--)->>)))))

Image credit: JPL/Caltech Melodie Kao (mkao@lowell.edu)

Surprisingly bright brown dwarf radio bursts

Berger+ (2001)

Melodie Kao (mkao@lowell.edu)

adapted from Williams+ (2014)

Brown dwarfs can flare!

Paudel+ (2018b)

Melodie Kao (mkao@lowell.edu)

CFHT-BD-Tau 4 ~67 MJ ~2900 K (M7) ~1 Myr

M Dwarfs ~2300-3800 K

L Dwarfs ~1500-2200 K

T Dwarfs ~550-1400 K

Y Dwarfs ~250~450 K

> Gas Giant Planets

Melodie Kao (mkao@lowell.edu)

decreasing optical flare activity

Chuck Carter & Gregg Hallinan

Melodie Kao (mkao@lowell.edu)

Star-Planet Interactions

Melodie Kao (mkao@lowell.edu)

Radiation Belts

Christensen+ (2009) See also: Yadav & Thorngren (2017)

Christensen+ (2009) See also: Yadav & Thorngren (2017)

(ultra)Hot Jupiters may have strong magnetic fields.

Melodie Kao (mkao@lowell.edu)

 0^{4} (Gauss) 10^{3} Surface Magnetic Field 10^{2} 10^{1} 10^{7}

hot Jupiters receive extra thermal energy from host stars

Melodie Kao (mkao@lowell.edu)

hot Jupiters receive extra thermal energy from host stars

Direct: Radio Aurorae $\nu_{[MHz]} \approx 2.8 \text{ B}_{planet [Gauss]}$

Melodie Kao (mkao@lowell.edu)

magnetic field

$\nu_{\rm MHz} \approx 2.8 B_{\rm Gauss}$

Melodie Kao (mkao@lowell.edu)

frequency

magnetic field

$\nu_{\rm MHz} \approx 2.8 B_{\rm Gauss}$

$\begin{array}{c} S \propto \\ P_{O} \\ P$

Saur+ 2013

Soc power dissipated

 R^2

obstacle size

planet magnetic field

Saur+ 2013

Melodie Kao (mkao@lowell.edu)

$B_{\rm wind} \Delta u^2 \sin^2 \theta \sqrt{\rho_{\rm wind}}$

(magnetospheric plasma flow properties)

 R^2_0

obstacle size

Melodie Kao (mkao@lowell.edu)

$B_{\rm wind} \Delta u^2 \sin^2 \theta \sqrt{\rho_{\rm wind}}$

(magnetospheric plasma flow properties)

Radio Aurorae **Direct:** $\nu_{\rm [MHz]} \approx 2.8 \; B_{\rm planet \, [Gauss]}$

test inferred fields

Yantis+ 1977 Winglee+ 1986 Zarka+ 1997 Bastian+ 2000 Farrell+ 2003 Lazio+ 2004 Ryabov+ 2004 Guenther+ 2005 Shiratori+ 2005 Winterhalter+ 2006 Majid+ 2006 George+ 2007 Lazio+ 2007 Lecavelier Des Etangs+ 2009 Smith+ 2009 Lazio+ 2010a Lazio+ 2010b Zarka+ 2011 Lecavelier Des Etangs+ 2011 Stroe+ 2012 Lecavelier Des Etangs+ 2013 Hallinan+ 2013 Sirothia+ 2014 Murphy+ 2015 Vasylieva 2015 Knapp+ 2016 Turner+ 2017 Bastian+ 2018 O'Gorman+ 2018 de Gasperin+ 2020 Green+ 2021 Narang+ 2021 Turner+ 2021

No confirmed exoplanet radio aurorae.

Melodie Kao (mkao@lowell.edu)

special thanks: Jake Turner, Marin Anderson, Mary Knapp

Yantis+ 1977 Winglee+ 1986 Zarka+ 1997 Bastian+ 2000 Farrell+ 2003 Lazio+ 2004 Ryabov+ 2004 Guenther+ 2005 Shiratori+ 2005 Winterhalter+ 2006 Majid+ 2006 George+ 2007 Lazio+ 2007 Lecavelier Des Etangs+ 2009 Smith+ 2009 Lazio+ 2010a Lazio+ 2010b Zarka+ 2011 Lecavelier Des Etangs+ 2011 Stroe+ 2012 Lecavelier Des Etangs+ 2013 Hallinan+ 2013 Sirothia+ 2014 Murphy+ 2015 Vasylieva 2015 Knapp+ 2016 Turner+ 2017 Bastian+ 2018 O'Gorman+ 2018 de Gasperin+ 2020 Green+ 2021 Narang+ 2021

Turner+ 2021

Melodie Kao (mkao@lowell.edu)

a candidate exoplanet aurorae.

- (SEFD)
 - 3.00×10^{-3}
- ntensity 2.95×10⁻

(SEFD) ntensity

Hallinan+ 2015 Kao+ 2016 Pineda+ 2017 Image: Chuck Carter & Gregg Hallinan

Brown dwarfs: Magnetic analogs to gas giant planets

Brown dwarfs: high potential to power aurorae.

Saur+ 2021

Melodie Kao (mkao@lowell.edu)

auroral host's radius

brown dwarfs: comparative magnetospheric physics

Hallinan+ 2015 Kao+ 2016 Pineda+ 2017 Image: Chuck Carter & Gregg Hallina

Convected thermal energy sets magnetic field?

Christensen+ (2009) Cauley+ (2019) Yadav & Thorngren (2017)

Convected thermal energy sets magnetic field? Maybe not.

Kao+ (2018)

Some brown dwarfs strongly magnetized, others not. Why?

 \propto (Convected energy flux)^{2/3}

Vedantham+ 2023 Vedantham+ 2020b

Convected thermal energy sets magnetic field? Maybe not.

Kao+ (2018)

What **shapes** are exoplanet magnetic fields?

Star-Planet Interactions (strength)

Melodie Kao (mkao@lowell.edu)

Radiation Belts (shape)

Hallinan+ 2007

Hallinan+ 2007

Hallinan+ 2007

Melodie Kao (mkao@lowell.edu)

IR aurora - NASA, ESA, CSA, Jupiter ERS Team radiation belt - Bolton+ 2004

DECLINATION (J2000)

Radio search for companions: Marginally resolved ~20 R_{UCD}

Forbrich & Berger 2009

See also: Zhang & Hallinan (2020) Curiel+ (2020)

Forbrich & Berger 2009

Melodie Kao (mkao@lowell.edu)

DECLINATION (J2000)

Radio search for companions: Marginally resolved ~20 R_{UCD}

radiation belt? :)

IR aurora - NASA, ESA, CSA, Jupiter ERS Team radiation belt - Bolton+ 2004

Melodie Kao (mkao@lowell.edu)

spatially resolvable?

Melodie Kao (mkao@lowell.edu) 39 Dishes:

1x **100m** 10x **25m**

extended

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

Melodie Kao (mkao@lowell.edu)

+ long-lived

Melodie Kao (mkao@lowell.edu)

not aurorae

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

see also: Climent+ (Science 2023)

Melodie Kao (mkao@lowell.edu)

aurorae 3 kiloGauss

not aurorae

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

see also: Climent+ (Science 2023)

Melodie Kao (mkao@lowell.edu)

aurorae **3 kiloGauss**

not aurorae @ 2 Gauss

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

see also: Climent+ (Science 2023)

ure 2023) nce 2023)

Melodie Kao (mkao@lowell.edu)

aurorae 3 kiloGauss

8.4 gigahertz synchrotron @ 2 Gauss **15 MeV**

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

see also: Climent+ (Science 2023)

Climent+ (2023, Science) Kao, Mioduszewski+ (2023, Nature)

Melodie Kao (mkao@lowell.edu)

higher energy e-(more compact)

lower energy e-

Kao, Mioduszewski, Villadsen & Shkolnik (Nature 2023)

Melodie Kao (mkao@lowell.edu)

IR aurora - NASA, ESA, CSA, Jupiter ERS Team radiation belt - Bolton+ 2004

Kao & Shkolnik (in prep)

https://arxiv.org/abs/2403.08860

radiation belts may be ubiquitous:

planets brown dwarfs low mass stars massive stars

Leto+ (2021) Owoki+ (2022)

Melodie Kao (mkao@lowell.edu)

see Barnali Das' invited review tomorrow!

Convected thermal energy sets magnetic field? Maybe not.

Kao+ (2018)

Star-Planet Interactions (strength, shape)

Melodie Kao (mkao@lowell.edu)

Radiation Belts (shape)

Host-Satellite Interactions (strength, shape)

Melodie Kao (mkao@lowell.edu)

Radiation Belts (shape)

Hamilton+ (2013) Image credit: NASA/Hamilton (New Horizons) Melodie Kao (mkao@lowell.edu)

Exo-volcanism seeding brown dwarf magnetospheres?

satellite-driven

(e.g. lo-Jupiter interaction; star-planet interactions)

Mura+ 2017 (JUNO) Melodie Kao (mkao@lowell.edu)

**************** Europa

0

adapted from Rob Kavanagh

Plasma (solar wind / volcanism)

adapted from Rob Kavanagh

Plasma (solar wind / volcanism)

magnetosphere

Melodie Kao (mkao@lowell.edu)

adapted from Rob Kavanagh

Plasma (solar wind / volcanism)

adapted from Rob Kavanagh

radio aurorae

Proxima Centauri: Radio SPI? Perez-Torres+ 2021

"No feasible scenario where the planet can induce radio emission in the star's corona" Kavanagh+ 2021

Vedantham+ 2020

Close-in Earth-sized planet powering radio emission?

Vedantham+ 2020

Melodie Kao (mkao@lowell.edu)

Close-in Earth-sized planet could power observed flux densities

RV follow-up rules out massive planets

(Pope+ 2020, Perger+ 2021)

YZ Ceti: Radio SPI?

Orbital phase (arbitrary zero)

Pineda & Villadsen 2023 see also: Triglio+ 2023

$\Delta u^2 \sin^2 \theta \sqrt{\rho_{\text{wind}}}$

(magnetospheric plasma flow properties)

Stay tuned for Cool Stars!

Pineda & Villadsen 2023 see also: Triglio+ 2023

Orbital phase (arbitrary zero)

$B_{\rm wind} \Delta u^2 \sin^2 \theta \sqrt{ ho_{ m wind}}$ (magnetospheric plasma flow properties)

terrestrial satellites around brown dwarfs

Melodie Kao (mkao@lowell.edu)

$\lesssim 10 \text{ MHz emission}$ (terrestrial planets)

GO-LoW Great Observatory at Long Wavelengths

Melodie Kao (mkao@lowell.edu)

$\leq 10 \text{ MHz emission}$ (terrestrial planets)

https://arxiv.org/abs/2404.08432 Knapp, Paritsky, Kononov, Kao (2024 NIAC)

GO-LoW Great Observatory at Long Wavelengths

Melodie Kao (mkao@lowell.edu)

$\leq 10 \text{ MHz emission}$ (terrestrial planets)

https://arxiv.org/abs/2404.08432 Knapp, Paritsky, Kononov, Kao (2024 NIAC)

GO-LoW Great Observatory at Long Wavelengths

Melodie Kao (mkao@lowell.edu)

$\leq 10 \text{ MHz emission}$ (terrestrial planets)

FFT

https://arxiv.org/abs/2404.08432 Knapp, Paritsky, Kononov, Kao (2024 NIAC)

Melodie Kao (mkao@lowell.edu)

Knapp, Paritsky, Kononov, Kao (2024 NIAC)

Star-Planet Interactions (strength, shape)

Melodie Kao (mkao@lowell.edu)

Radiation Belts (shape)

extra slides