Using JVLA Observations of SiO Masers to Probe the Dynamics of an AGB Star: W Hydrae

Patrick Kamieneski

Bowdoin College MIT Haystack REU, Summer 2014 Mentor: L.D. Matthews

W Hya

- Mira variable, AGB star
- Source of SiO, OH, and H₂O masers
- Period of 370 days
- Visual magnitude approx. 5 to 10
- R* ~ 2.5 AU
- ~115 pc away
- Oxygen-rich

Motivation/context for project

- Silicon monoxide masers typically observed in a region just outside of the "radio photosphere" at ~2 R*
- Lie inside the dustforming region
 - AGB stars lose mass through a dust-driven stellar wind
- Provide indications of physical conditions in this range of the circumstellar envelope (CSE)

Model cross-section for Long-Period Variable (LPV) star:

adapted from Reid and Menten 1997

Background on masers

- Microwave Amplification by Stimulated Emission of Radiation
 - results from a population inversion (majority of molecules not in ground state)
- Triggered by a pumping process (radiative/ collisional)

 Good probe into the temperature/density/ kinematic conditions of the environment in which they are formed

Methods

- Data collected from Very Large Array in Socorro, NM in Feb. 2014
 - 11 lines near 43 GHz targeted simultaneously, allowed by capability of upgraded VLA
- Primarily handled with Astronomical Image Processing System (AIPS)
- A number of calibration sources were simultaneously observed with the target W Hya: J1339-2620 (gain calibrator), J1337-1257 (bandpass calibrator), 3C286 (flux calibrator)
- Hanning smoothing applied to correct for Gibbs ringing (caused by strong spectral-line sources), leading to a loss of spectral resolution (to 0.4 km/s resolution)
- Phase and amplitude (iterative) self-calibration of the SiO lines using maser emission as a model

²⁸SiO v=1, epochs 2000 & 2014

 $\Phi = 0.71$

Spot maps for other isotopologues (size scaled by flux density)

Potential for bipolar outflow in W Hya, as indicated by the ²⁸SiO v=1 first moment map (intensityweighted velocity field)

m s⁻¹

²⁸SiO ground-state, moment 0 map

Results

- Different SiO lines are not co-located
 - e.g., ground-state ²⁸SiO emission is located a much greater distance from the star than that of the excited states
- Potential of a bipolar outflow is supported by the appearance of a saddle-like structure in the velocityfield map of v=1 line, in addition to weaker gradients in velocity in the spot maps for other lines
- SiO ground-state emission was detected in an unusually spatially-extended structure, found to lie approx. 40 AU to 80 AU (~15 R_{*} to 30 R_{*}) from the star's center
 - In comparison, 1665-MHz OH (hydroxyl) emission has been previously detected in a shell with radius 80 AU (Szymczak et al. 1998), while the inner radius of the dust shell >50 AU (Zhao-Geisler et al. 2011)

Acknowledgments

Many thanks to Lynn Matthews for her patient guidance throughout the summer, and for her flexibility in coordinating an alternative project when availability of the 37 m antenna was postponed;

Thanks also to all Haystack staff for devoting time to offer this REU program, and for providing a very welcoming environment for us students.