CHARACTERIZING PLANETARY WAVE SIGNATURES IN THE IONOSPHERE

Jonathan Wurtz – University of New Hampshire Haystack Research Experience for Undergraduates 2012

Outline

- Physics: Planetary Waves
- Data and derivation
- Analysis and Results
 - Geophysical Drivers
 - Fourier Decomposition
 - Multi-wave fitting

What are Planetary Waves?

- Global-scale waves that wrap around the entire Earth
- Involved in energy transfer between atmospheric regions
- Resonant structures across an entire slice of latitude
- Seen in Stratosphere and Ionosphere
- Resonances in wave 0-4 patterns
- Periods between 2 and 20 days
- Seen in various measurements:
 - Ionization
 - Temperature
 - Winds

The Jet Streaman example of a driver of PW

What am I working with?

- Goal of project
 - Investigating planetary wave signatures in upper atmosphere
- Global TEC measurements from GPS network
 - TEC == Total Electron Content
- Massive data set
 - From 2003 to 2010
 - 1x1x5 minute binning
 - ~350GB of data
 - Imported from Madrigal

TEC data starting Jan 4, 2008

longitude

Created Data Products

- Data Formatting
 - .MAT file type
 - 5 degree by 5 degree by 1 hour bins.
 - ~60% coverage
- 27 day moving average
- Differential TEC
- Have 5 final data types
 - Easy-to-access
 - In both .dat and .mat format
- Coordinate Conversions
 - From [lat long Uttime]
 - To [lat long localtime]
 - To [lat localtime UTtime]
 - To [geomagnetic, UTtime]

5

A different Visualization: Differential Data

Geophysical Drivers: Moon

Geophysical Drivers: Kp

8

Fourier Decomposition

- Take sub-portions of data and Fourier transform it
- Gives evolution of wave amplitude through time
- This method Applicable to any 1D signal (and cats?)

Hi, Dr. Elizabeth? Yeah, vh... I accidentally took the Fourier transform of my cat... Meow! http://www.xkcd.com/26

Kp Index, from 1951 to 2011

TEC over mid US (35.0 lat -80.0 long)

Comparing Kp and TEC periodicity

- Kp and TEC taken as a 180-day slice starting Jan 1, 2009
- TEC taken as average over specified Latitude range and all longitude

Multi-wave fitting

- Creates a least-squares 2-dimensional best fit model of the data
- Simultaneously linearly fits 30 waves to a least-squares fit

 4 degrees of freedom for each wave differentiate between left-moving, standing, and right-moving

Example Fitting: starting July 14, 2007

- Doesn't match data very well
- 1.5 Uses overlaid fittings
 - 72 fits present
 - 280,000 semidependent fitting parameters
 - Shows basic forms of PW activity

2

Longitude

Geophysical Drivers

Days since Jan 1, 2009

Results and Conclusions

- Periodicities seen in TEC data
- In TEC data there were clear signatures of forcing from Kp and the moon, dependent of Latitude
- Developed wave analysis tools for simultaneous extraction of multiple waves
- Developed useful tools for future work
 - Global dataset with coverage from 2003-2010
 - 1,000-1,500 lines polished MATLAB code

Thanks to

- My advisors:
 - Anthea Coster
 - Larisa Goncharenko
 - Shunrong Zhang
- The Haystack Community
- Haystack
- NSF

