NRC.CNRC

Radio Studies of Classical Novae: Some Shocking Revelations

Michael P. Rupen, on behalf of the eNova collaboration November 3, 2017 Herzberg Astronomy & Astrophysics Research Center

National Research Conseil national de Council Canada recherches Canada

The eNova team

...and friends

- Laura Chomiuk (MSU)
- Adam Kawash (MSU)
- Kwan-Lok Li (MSU)
- Justin Linford (GWU)
- Koji Mukai (NASA/U-Maryland)
- Amy Mioduszewski (NRAO)
- Tommy Nelson (Pitt)
- Michael Rupen (NRC Canada)
- Jeno Sokoloski (Columbia)

- Jennifer Weston (AAAS)
- Tom Finzell (Michigan)
- Brian Metzger (Columbia)
- Indrek Vurm (Columbia)
- Tim O'Brien (Jodrell Bank)
- Valerio Ribeiro (Botswana)
- Alexander van der Horst (GWU)
- Fred Walter (Stony Brook)
- Ulisse Munari (Padua)
- and more!

Thermonuclear runaway (TNR) on the surface of a white dwarf, that ejects a large amount of accreted matter. (K. Mukai)

- Accretion → TNR interacting binary
- Could be in CV or symbiotic binary

10⁻⁷ to 10⁻³ M_{sun} ejected at 500-5000 km/s →KE~ 10⁴⁴-10⁴⁶ ergs

~8 observed (of ~35) per year in Milky Way

This talk avoids recurrent novae (RS Oph, T Pyx, ...)

NCCNRC

Basic paradigm: expanding HII region powered by hot white dwarf

- Mass ejected by WD explosion (TNR)
- Homologous (Hubble flow) expansion

Basic paradigm: expanding HII region powered by hot white dwarf

- Mass ejected by WD explosion (TNR)
- Homologous (Hubble flow) expansion

Radio:

- $T_{b,max}$ ~ 10⁴ K
- Rise: $t^2 v^2$
- Decay: t⁻³ ν^{-0.1}

NRC CNRC

Basic paradigm: expanding HII region powered by hot white dwarf

- Mass ejected by WD explosion (TNR)
- Homologous (Hubble flow) expansion

Cracks in the paradigm: not just free-free emission...and not just one peak

Linford et al. 2017

Cracks in the paradigm: synchrotron spectra

NRC CNRC

Cracks in the paradigm: double peaks

V1723 Aql 2010

- 6kpc ?
- NOT embedded
- v_{max}~ 1500 km/s
- Initial peak:
 - t^{3.3}, v^{1.3}
 - + \mathbf{T}_{b} up to few million K
- 2nd peak reasonably thermal (albeit v^{1.5})

Cracks in the paradigm: double peaks

NCCNC

Cracks in the paradigm: even single-peaked issues

V5589 Sgr 2012

- 4 kpc
- NOT embedded
- Radio: $t^{3.9}$ at 5 GHz ; $v^{0.9}$, then flatter as rose
- <u>T_b>100,00</u>0 K
- No γ -rays less luminous
- Very hard X-rays 33keV, softening to 1.3 by time radio appears
- Opt slow+fast
- No extra N_H

Evidence for shocks & complex mass loss

- Radio: synchrotron spectra, high T_b, complex radio light curves
- Optical: multiple spectral components, complex optical light curves
- Hard X-rays (>1 keV) & γ-rays
 - not always same ones, and not at same time...

This seems to be normal

- Many sources
- MS companions, wide orbits as well as "embedded" novae

V959 Mon: a test case

- First "classical" γ-ray nova
 - Note late ID
- Radio behavior fairly typical
 - Note early synchrotron excess

V959 Mon: two orthogonal flows, with shocks

Chomiuk et al. 2014

Slow shell ejected first. Interaction with companion enhances mass loss N/S Thermal ejecta observed with VLA. Emission extended E/W

tracing fast ejecta

V959 Mon: a consistent picture

- Optical lines suggest bipolar expansion
- Comparison to radio images gives parallax
- Same model agrees with basics of X-ray emission/absorption (*Nelson* et al.)

V959 Mon: HST & growth of symmetry

Sokoloski et al. 2017

Nova challenges

- Confirm or refute the "two-wind" paradigm
 - Geometry & viewing angle
 - Origin of flows
 - Common envelope & delayed ejections
- Importance (and measurement!) of clumping (mass estimates)
- Observational
 - Why not $v^2 t^2$?
 - What sets fast rise rate & timing?
 - Do we ever see $v^{0.1}$?
- Source of γ-ray emission
 - Hadronic or leptonic? What explains the range of L_{γ} ?
- Importance of shocks
 - Where does the shock energy go?
 - Making γ-rays, dust, relativistic particles
 - Powering optical

The next steps in the radio

- The next few years
 - More sources
 - More consistent (esp. earlier) coverage
 - More consistent modeling
 - Imaging, imaging, imaging
 - Correlations across wavelengths (γ-rays, X-rays [0.1-100 keV], optical, IR, …)
 - Radio recombination lines
 - ALMA: thermal emission, dust, molecules
 - A nearby northern nova!
- The next decade(s)
 - Sensitivity -- samples & sources
 - Imaging, imaging, imaging spatial dynamic range, full sampling, wide frequency range
 - Radio light echoes (continuum & line)

ngVLA: the ideal instrument

ngVLA, 1 hr/epoch 30 GHz 100 GHz

- VLA flux densities (worst-case spectra)
- 0.6 mas/day (1000km/s@1kpc)

NRC.CNRC

NRC·CNRC

Questions?

Michael P. Rupen Principle Research Officer Tel: 250 497-2307 michael.rupen@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

National Research Council Canada Conseil national de recherches Canada

Metzger cartoons

V5856 Sgr 2016: Gamma-rays track optical

NRC CNRC

Gamma-rays from novae

Gamma-rays from novae: not standard candles

Gamma-ray novae: not standard candles

V959 Mon cartoon

Chomiuk et al. 2012

V959 Mon

Chomiuk et al. 2014

NRC CNRC

V959 Mon

Chomiuk et al. 2014

V959 Mon: NRAO cartoon

V959 Mon: X-ray observations

Page et al. 2013: V959 Mon XRT, UVOT and groundbased optical light curves

3.363.38 3.4

10

15

20

5

10

X-ray flux rules out thermal origin for VLBA knots

N(H) evolution consistent with internal shock and an ejected mass of at least a few 10^{-5} M_{\odot} (Nelson et al., in prep)

NC CNRC

V959 Mon expansion parallax

Expansion observed in radio images

- Ribeiro et al. (2013) created morpho-kinematic model of ejecta in V949 Mon that explains emission line structure and hence velocities of the ejecta
- We are using the same model to interpret the radio images
- Comparing observed images to simulations, we constrain the distance to V949 Mon to be 1.4 (+0.9,-0.5) kpc (Linford et al., in prep)
- Revises gamma-ray luminosity down to 6 x 10³⁴ erg/s

NCCNRC

V959 Mon: perils of eMERLIN

Healy et al. 2016

NC.CNCC

V339 Del 2013

V339 Del 2013

eNova collaboration 2017

NRC.CNRC

V339 Del: ESO art

V2659 Cyg 2014

V5666 Sgr 2014

V5667 Sgr 2015

V5667 Sgr 2015

NRC.CNRC

Linford et al. in prep.

- 8.5 kpc??
- Embedded (K giant)
- γ-rays
- Opt bounces –
 cf. AAVSO

NRC.CNRC

Linford et al. in prep.

NRC CNRC

V5668 Sgr 2015 HST

NRC CNRC

Importance of imaging – gamma-ray nova V959 Mon

eMERLIN day 87 5 GHz

VLA day 126 36.5 GHz

/LA day 615 17.5 GHz

NHC CNRC